Genes that control cellular senescence identified

From Kobe University:

IMAGE: By treating liver cancer cells with different concentrations of the anticancer drug etoposide, researchers induced senescence and apoptosis in cells, comprehensively compared the gene expression levels, and identified the genes… view more

Credit: Kobe University

A research group including Professor KAMADA Shinji, Research Fellow NAGANO Taiki (both from the Kobe University Biosignal Research Center), and Unit Chief ENARI Masato (National Cancer Research Institute) has succeeded in identifying genes that control cellular senescence – permanently arrested cell growth. The process involved treating liver cancer cells using anticancer drugs of various concentrations, inducing apoptotic cell death and cellular senescence, and comparing gene expression levels. By developing drugs that suppress the activity of these genes, this discovery has potential applications for creating new highly-effective anticancer drugs, or use in anti-aging drugs. The results of this research were published on August 22 in the online version of Scientific Reports.

Living organisms experience various stresses during their lifespans. These stresses include radiation, ultraviolet rays, and chemical substances that directly damage DNA and cause cancer. Organisms are able to speedily repair DNA when it is damaged, but when the damage is severe, they manifest two different cell responses: apoptosis – a type of controlled cell death – and cellular senescence, which permanently suspends cell growth. Both these responses prevent the cell which suffered DNA damage from proliferating and becoming cancerous.

Cancer treatment based on radiation and anticancer drugs aims to destroy cancer tissue by triggering apoptosis in cancerous cells. However, it is thought that this treatment is itself a stress factor that induces cell mutation, causing changes in the cancerous cells. These cells produce clones that have acquired resistance against the treatment, leading to a relapse. One of the changes in cancerous cells caused by this treatment is …

Continue Reading