New Membrane Could Save $2 Billion a Year for U.S. Industries

From Scientific American:

The process could cut the energy needed in separation stages in half and save $2 billion a year in energy costs in the United States and avert 45 million tons of carbon dioxide emissions around the world annually.

Researchers designed a membrane that could distinguish between very closely related molecules and could survive in conditions that would cause existing membranes to fall apart, opening a whole new suite of applications. They published their findings last week in the journal Science.

Benjamin McCool, a co-author and an advanced research associate at Exxon Mobil Corp., explained that separating chemicals is a longstanding industrial problem and that upward of 10 percent of the world’s energy demand goes to these processes, like removing salt from seawater.

Between 40 and 60 percent of the energy used to make clean water, fuels and industrial chemicals goes toward separation.

In this case, the researchers looked at separating a class of organic compounds called xylenes.

“It’s a separation we have been working on at Exxon Mobil dating back to the 1990s,” McCool said.

Xylenes are precursors for materials like polyesters and are important industrial solvents. However, they come in several varieties that use the same atomic components but attach them differently. This means that they have overlapping traits like mass and boiling points, so conventional separation techniques like distillation aren’t as effective and others require a lot of energy to tell these very similar molecules apart.

“We’re talking very, very small size differences,” McCool said. “They differ in size by a tenth of a nanometer.”

The researchers decided to come up with a method that would work at room temperature, cutting its energy requirement, and build it from off-the-shelf components, reducing its cost.

The process, called reverse osmosis, is the same technique that many desalination plants use to produce potable water from the ocean. These plants use …

Continue Reading