‘Sniffer plasmons’ could detect explosives

From Moscow Institute of Physics and Technology:

Physicists from the Moscow Institute of Physics and Technology (MIPT) have found that the two-dimensional form of carbon, known as graphene, might be the ideal material for manufacturing plasmonic devices capable of detecting explosive materials, toxic chemicals, and other organic compounds based on a single molecule, says an article published in Physical Review B.

Plasmons in constructing high-accuracy electronics and optics

Scientists have long been fascinated by the potential applications of a quasiparticle called the plasmon, a quantum of plasma oscillations. In the case of a solid body, plasmons are the oscillations of free electrons. Of special interest are the effects arising from the surface interactions of electromagnetic waves with plasmons–usually in the context of metals or semimetals, as they have a higher free electron density. Harnessing these effects could bring about a breakthrough in high-accuracy electronics and optics. One possibility opened up by plasmonic effects is the subwavelength light focusing, which increases the sensitivity of plasmonic devices to a point where they can distinguish a single molecule. Such measurements are beyond what any conventional (classical) optical devices can achieve. Unfortunately, plasmons in metals tend to lose energy quickly due to resistance, and for this reason they are not self-sustained, i.e. they need continuous excitation. Scientists are trying to tackle this issue by using composite materials with predefined microstructure, including graphene.

Graphene is an allotrope of carbon in the form of a two-dimensional crystal. It can be visualised as a one-atom-thick honeycomb lattice made of carbon atoms. Two MIPT graduates, Andre Geim and Konstantin Novoselov, were the first to isolate graphene, which won them a Nobel Prize in Physics. Graphene is a semiconductor with extremely high charge carrier mobility. Its electrical conductivity is also exceptionally high, which makes graphene-based transistors possible.

Theoretical physicists give the okay

Although, plasmonic devices have seemed an exciting prospect to …

Continue Reading